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1 Introduction to Minimax Lower Bounds

1.1 Minimax risk and methods of obtaining lower bounds

In the last few lectures, we were talking about upper bounds for error of statistical esti-
mators. Now we will prove some lower bounds, which tell us that for a certain number of
samples, you cannot have vanishing estimation error.

In statistical decision theory, we have a class of distributions P and a parameter/function
of distributions 6 : P — ©O. If this is a one to one mapping, we write P = {Py : 6 € O}.
Then we have statistical estimators, which are mappings 0:X — 0. Suppose there is
a semimetric! p(6,0') : © x © — R, such as

p(0,0) =110 —=0ll2,  p(f, ) =1If = fllz=-

If &:[0,00) — [0,00) is increasing, the risk is

~

R(0;0(P)) = Ex~p[®(p(0(X); 0(P)))]-
In this framework, the loss function is £ = ¢ o p.

Definition 1.1. The minimax risk with n samples is

Ma(0(P),®0p) = inf sup R(0:0(P))
0:X—0 PcP

The inf and the sup mean that we are taking the best estimator for the worst model.

~

(a) If R(#) achieves M,, it is good enough.

~

(b) If R(f) > M,,, we should either find a better estimator or a sharper lower bound.

'For a semimetric, we may allow 0 # @’ to still have p(0,6') = 0.



Example 1.1. Let © = R? with Py = N(0,0%1;),0 € RY, where o2 is known. Our sample
is (Zi)iem] & Py, 50 21.n, ~ P§. Our metric is p(6,0') = ||6 — 6'||2, and we pick ®(t) = ¢2.

Consider the estimator §n = % >, ;. Then

n 2
~ 1 d
R(0n; Py) = =) @ - =0’—
(0n; Pg) =E . Zx 0 o7
=1 2
which tells us that J
M, <=,

n
However, we can prove the same value as a lower bound. Our goal in this lecture and the
next is to show that M,, > 002% for some constant c.

Remark 1.1. Here are some methods of showing lower bounds for estimation error, some
of which we have already seen.

(a) Bayesian decision theory: M,, is the Bayes risk of the least favorable prior.

(b) Cramer-Rao lower bound: For unbiased estimators, there is a lower bound given in
terms of the Fisher information. If this does not depend on the Fisher information,
then it is a minimax lower bound.

(c) Bayes Cramer-Rao (Van-Tree’s inequality): This gives a “local minimax” lower
bound.

(d) Reduction to a testing problem: We will study this now. We first need some tools
from information theory.

1.2 Reduction to an M-ary testing problem

The idea is to find a testing problem easier than the estimation problem. A lower bound
for the testing problem will imply a lower bound for estimation.
Step 1: Construct a 2d-separated set of © in the p-metric.

So we require p(6°,67) > 26 for all i # j. This is the same as a packing, except we allow >
instead of >. If our separated set is {0,602, ...,0M}, we get {Pg1,Pg2, ..., Py }.



Step 2: Sample (J, Z) € [M] x X. The joint distribution is

J ~ Unif({1,2,...,M})
Z|J=jn~Py.

Step 3: Let Q be the joint distribution of (J, Z). Then the marginal distribution of Z

1 M
]:

Our testing problem is that we want to find a ¢ : X — [M] such that Q(¢(Z) # J) is
small. If M = 2, this is standard binary hypothesis testing. The testing error is

is

QUW(Z) £7) = 5B (6(2) # 1)+ P (9(2) £2)]

Type I error Type II error

This is different from the traditional hypothesis testing setup in that instead of fixing the
Type I error and minimizing the Type II error, we want to minimize the average of these
€rrors.

Proposition 1.1 (From estimation to testing). Let ¥ be increasing and {0',...,0M} be
20-separated for § > 0. Then

Mn(0(P), ® 0 p) > ®(0) inf Q((2) # 7).

This works for all § > 0, so we can pick the § which gives the best lower bound. In
general, ®(J) is increasing with ¢, but the testing error inf, Q(/(Z) # J) is decreasing
with 6. We can choose § = §,, such that infy, Q(¢)(Z) # J) = %; any constant would work
here. Then the minimax lower bound will be

My > L85,

Proof. Fix P and 0. By Markov’s inequality,

E[®(p(0,0))] > D(5)P(D(p(0,0)) > ®(5))
= D(8)P(p(0,0) > 5).

We now want to relate this probability with the testing error. We have

sup P(p(0,6) > 6) > sup  Py(p(8,6) > 0)
peP 0e{o!,....0M}



v

M
M; 7Y > 6)
Q(p(8,67) > 5).

Define a test v via 0: Let

~

¢(z) = argmin p(0(2), 0).
Le[M]

This gives the #7 which is the closest to our estimate §(Z ). With this definition,
{0(2) # 7} < {p(0(2),67) = 3}.

This means we can lower bound the above Q probability:
inf Qp(0(2),0) 2 8) 2 inf Q¥ (2) # 7). O
0

How do we choose {#1,...,0M}? Moreover, how do we lower bound inf,, Q(¢(Z) # J)?
Here are two general methods.

1. M = 2: Le Cam’s method

e Two points method

e Convex hull method
2. M > 3:

o Assoaud’s method

e Fano’s method

Le Cam’s method is the most classical one, so we will start with it. Fano’s method is
the most important and useful method for high-dimensional models.

1.3 Some divergence measures

Here are some basic tools for these methods. Let P, Q be two probability distributions on
X. How can we measure their distance?

Definition 1.2. The total variation distance is
1
[P~ @ty i= sup [P(4) - Q(4)| = 5 [ Ip(o) ~ g(a)] duo).
ACX X

where p, ¢ are the densities of P, Q, if they exist.



Definition 1.3. The Kullback-Leibler divergence is

DQIIP) = [ ata)log 423 dxa).

There is a more general definition of the K-L divergence that does not require Q, P to
have densities with respect to Lebesgue measure. This is not a distance because D(Q || P) #
D(P || Q), but it has distance-like properties, such as D(P || Q) > 0 with D(P || Q) = 0 iff
P=Q.

Definition 1.4. The Hellinger distance is

H(P || Q) /F Va(@)? dv()

Here are some relationships between these notions of distance:

Proposition 1.2 (Pinsker’s inequality).
IP - Qllrv < +/5D(P || Q).

Proposition 1.3 (Le Cam’s inequality).

IP - Qllrv < VIR Q) /1 HQ(E’;”@).

Proposition 1.4.
1
HA(P || Q) < 5D(P | Q).

We will see that the TV distance is related to the testing error for a binary testing situa-
tion. On the other hand, the KL-divergence and Hellinger distance have good tensorization
properties: If we let

]P)l:n:]P)lx}PJQX"'X]P)n, (@1177,:(@1><Q2><...><(@n7

then

n

D(E"" || Q") =) D(P;i || Qi),

=1
1 . -
sEE @) =1 (1- 52 12))

=1



Example 1.2 (Gaussian distribution). For a Gaussian distribution, we have the density

1 (x —0)?
= —— 6 € R.
n=—mgon (-5 0). ve

The K-L divergence is

X

(2—6)2
_n\2 exp | — 55
=97 g (%)

1
D(IPy || Py —/ ex <—
FNE= ] o P2 )% (T

B (X -6 (X-0)
= Ex~r, [ 207 T 252
@2 6 1
= 20_2 - ﬁ + ; EXN]PQ[(H - 0/)X]
B (9/)2 92 1 ,
=07 T g2 T 2?00
B (9 _ 9/)2
- 202

Using Pinsker’s inequality and the tensorization property of the K-L divergence,

n n 1 mn .
Py — Py [lrv <4/ §D(P9 || P4)
n
< HED(]P’Q H ]P’g/)
_ o=y
- 402

We can also calculate the Hellinger distance

HR(Py || Py) = 1 — exp (—“"‘))) |

o
More generally, for § € R and Py = N (0, 0%1,), we get

10— 13
D(po || por) = Tf,

2 _ 16 — 0113
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