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1 Introduction to Minimax Lower Bounds

1.1 Minimax risk and methods of obtaining lower bounds

In the last few lectures, we were talking about upper bounds for error of statistical esti-
mators. Now we will prove some lower bounds, which tell us that for a certain number of
samples, you cannot have vanishing estimation error.

In statistical decision theory, we have a class of distributions P and a parameter/function
of distributions θ : P → Θ. If this is a one to one mapping, we write P = {Pθ : θ ∈ Θ}.
Then we have statistical estimators, which are mappings θ̂ : X → Θ. Suppose there is
a semimetric1 ρ(θ, θ′) : Θ×Θ→ R, such as

ρ(θ, θ′) = ‖θ − θ′‖2, ρ(f, f ′) = ‖f − f ′‖L2 .

If Φ : [0,∞)→ [0,∞) is increasing, the risk is

R(θ̂; θ(P )) = EX∼P [Φ(ρ(θ̂(X); θ(P )))].

In this framework, the loss function is ` = Φ ◦ ρ.

Definition 1.1. The minimax risk with n samples is

Mn(θ(P),Φ ◦ ρ) = inf
θ̂:X→Θ

sup
P∈P

R(θ̂; θ(P ))

The inf and the sup mean that we are taking the best estimator for the worst model.

(a) If R(θ̂) achieves Mn, it is good enough.

(b) If R(θ̂)�Mn, we should either find a better estimator or a sharper lower bound.

1For a semimetric, we may allow θ 6= θ′ to still have ρ(θ, θ′) = 0.
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Example 1.1. Let Θ = Rd with Pθ = N(θ, σ2Id), θ ∈ Rd, where σ2 is known. Our sample

is (xi)i∈[n]
iid∼ Pθ, so x1:n ∼ Pnθ . Our metric is ρ(θ, θ′) = ‖θ − θ′‖2, and we pick Φ(t) = t2.

Consider the estimator θ̂n = 1
n

∑n
i=1 xi. Then

R(θ̂n;Pθ) = E

∥∥∥∥∥ 1

n

n∑
i=1

xi − θ

∥∥∥∥∥
2

2

 = σ2 d

n
,

which tells us that

Mn ≤ σ2 d

n
.

However, we can prove the same value as a lower bound. Our goal in this lecture and the
next is to show that Mn ≥ cσ2 d

n for some constant c.

Remark 1.1. Here are some methods of showing lower bounds for estimation error, some
of which we have already seen.

(a) Bayesian decision theory: Mn is the Bayes risk of the least favorable prior.

(b) Cramer-Rao lower bound: For unbiased estimators, there is a lower bound given in
terms of the Fisher information. If this does not depend on the Fisher information,
then it is a minimax lower bound.

(c) Bayes Cramer-Rao (Van-Tree’s inequality): This gives a “local minimax” lower
bound.

(d) Reduction to a testing problem: We will study this now. We first need some tools
from information theory.

1.2 Reduction to an M-ary testing problem

The idea is to find a testing problem easier than the estimation problem. A lower bound
for the testing problem will imply a lower bound for estimation.

Step 1: Construct a 2δ-separated set of Θ in the ρ-metric.

So we require ρ(θi, θj) ≥ 2δ for all i 6= j. This is the same as a packing, except we allow ≥
instead of >. If our separated set is {θ1, θ2, . . . , θM}, we get {Pθ1 ,Pθ2 , . . . ,PθM }.
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Step 2: Sample (J, Z) ∈ [M ]×X . The joint distribution is{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

Step 3: Let Q be the joint distribution of (J, Z). Then the marginal distribution of Z
is

Q =
1

M

M∑
j=1

Pθj .

Our testing problem is that we want to find a ψ : X → [M ] such that Q(ψ(Z) 6= J) is
small. If M = 2, this is standard binary hypothesis testing. The testing error is

Q(ψ(Z) 6= J) =
1

2
[Pθ1(ψ(Z) 6= 1)︸ ︷︷ ︸

Type I error

+Pθ2(ψ(Z) 6= 2)︸ ︷︷ ︸
Type II error

].

This is different from the traditional hypothesis testing setup in that instead of fixing the
Type I error and minimizing the Type II error, we want to minimize the average of these
errors.

Proposition 1.1 (From estimation to testing). Let Ψ be increasing and {θ1, . . . , θM} be
2δ-separated for δ > 0. Then

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q(ψ(Z) 6= J).

This works for all δ > 0, so we can pick the δ which gives the best lower bound. In
general, Φ(δ) is increasing with δ, but the testing error infψ Q(ψ(Z) 6= J) is decreasing
with δ. We can choose δ = δn such that infψ Q(ψ(Z) 6= J) = 1

2 ; any constant would work
here. Then the minimax lower bound will be

Mn ≥
1

2
Φ(δn).

Proof. Fix P and θ̂. By Markov’s inequality,

E[Φ(ρ(θ̂, θ))] ≥ Φ(δ)P(Φ(ρ(θ̂, θ)) ≥ Φ(δ))

= Φ(δ)P(ρ(θ̂, θ) ≥ δ).

We now want to relate this probability with the testing error. We have

sup
P∈P

P(ρ(θ̂, θ) ≥ δ) ≥ sup
θ∈{θ1,...,θM}

Pθ(ρ(θ̂, θ) ≥ δ)
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≥ 1

M

M∑
j=1

Pθj (ρ(θ̂, θj) ≥ δ)

= Q(ρ(θ̂, θJ) ≥ δ).

Define a test ψ via θ̂: Let
ψ(z) = arg min

L∈[M ]
ρ(θ̂(Z), θ).

This gives the θj which is the closest to our estimate θ̂(Z). With this definition,

{ψ(Z) 6= J} ⊆ {ρ(θ̂(Z), θj) ≥ δ}.

This means we can lower bound the above Q probability:

inf
θ̂
Q(ρ(θ̂(Z), θj) ≥ δ) ≥ inf

ψ
Q(ψ(Z) 6= J).

How do we choose {θ1, . . . , θM}? Moreover, how do we lower bound infψ Q(ψ(Z) 6= J)?
Here are two general methods.

1. M = 2: Le Cam’s method

• Two points method

• Convex hull method

2. M ≥ 3:

• Assoaud’s method

• Fano’s method

Le Cam’s method is the most classical one, so we will start with it. Fano’s method is
the most important and useful method for high-dimensional models.

1.3 Some divergence measures

Here are some basic tools for these methods. Let P,Q be two probability distributions on
X . How can we measure their distance?

Definition 1.2. The total variation distance is

‖P−Q‖TV := sup
A⊆X

|P(A)−Q(A)| = 1

2

∫
X
|p(x)− q(x)| dµ(x),

where p, q are the densities of P,Q, if they exist.
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Definition 1.3. The Kullback-Leibler divergence is

D(Q || P) :=

∫
X
q(x) log

q(x)

p(x)
dλ(x).

There is a more general definition of the K-L divergence that does not require Q,P to
have densities with respect to Lebesgue measure. This is not a distance becauseD(Q || P) 6=
D(P || Q), but it has distance-like properties, such as D(P || Q) ≥ 0 with D(P || Q) = 0 iff
P = Q.

Definition 1.4. The Hellinger distance is

H2(P || Q) :=

∫
X

(
√
p(x)−

√
q(x))2 dν(x).

Here are some relationships between these notions of distance:

Proposition 1.2 (Pinsker’s inequality).

‖P−Q‖TV ≤
√

1
2D(P || Q).

Proposition 1.3 (Le Cam’s inequality).

‖P−Q‖TV ≤
√

H2(P || Q)

√
1− H2(P || Q)

4︸ ︷︷ ︸
≤1

.

Proposition 1.4.

H2(P || Q) ≤ 1

2
D(P || Q).

We will see that the TV distance is related to the testing error for a binary testing situa-
tion. On the other hand, the KL-divergence and Hellinger distance have good tensorization
properties: If we let

P1:n = P1 × P2 × · · · × Pn, Q1:n = Q1 ×Q2 × · · · ×Qn,

then

D(P1:n || Q1:n) =

n∑
i=1

D(Pi || Qi),

1

2
H2(P1:n || Q1:n) = 1−

n∏
i=1

(
1− 1

2
H2(Pi || Qi)

)
.
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Example 1.2 (Gaussian distribution). For a Gaussian distribution, we have the density

pθ =
1√

2πσ2
exp

(
−(x− θ)2

2σ2

)
, θ ∈ R.

The K-L divergence is

D(Pθ || Pθ′) =

∫
1√

2πσ2
exp

(
−(x− θ)2

2σ2

)
log

exp
(
− (x−θ)2

2σ2

)
exp

(
− (x−θ′)2

2σ2

) dx
= EX∼Pθ

[
−(X − θ)2

2σ2
+

(X − θ′)2

2σ2

]
=

(θ′)2

2σ2
− θ2

2σ2
+

1

σ2
EX∼Pθ [(θ − θ

′)X]

=
(θ′)2

2σ2
− θ2

2σ2
+

1

σ2
(θ − θ′)θ

=
(θ − θ′)2

2σ2
.

Using Pinsker’s inequality and the tensorization property of the K-L divergence,

‖Pnθ − Pnθ′‖TV ≤
√

1

2
D(Pnθ || Pnθ′)

≤
√
n

2
D(Pθ || Pθ′)

≤
√
n(θ − θ′)2

4σ2
.

We can also calculate the Hellinger distance

H2(Pθ || Pθ′) = 1− exp

(
−(θ − θ)2

8σ2

)
.

More generally, for θ ∈ Rd and Pθ = N(θ, σ2Id), we get

D(pθ || pθ′) =
‖θ − θ‖22

2σ2
,

H2(Pθ || Pθ′) = 1− exp

(
−‖θ − θ‖

2
2

8σ2

)
.
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